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A hybrid simulation method is introduced and used to study two-dimensional single-asperity and multi-
asperity contacts both quasistatically and dynamically. The method combines an atomistic treatment of the
interfacial region with a finite-element method description of subsurface deformations. The dynamics in the
two regions are coupled through displacement boundary conditions applied at the outer edges of an overlap
region. The two solutions are followed concurrently but with different time resolution. The method is bench-
marked against full atomistic simulations. Accurate results are obtained for contact areas, pressures, and static
and dynamic friction forces. The time saving depends on the fraction of the system treated atomistically and is
already more than a factor of 20 for the relatively small systems considered here.
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I. INTRODUCTION

Continuum theories [1] are widely used to analyze me-
chanical contact between surfaces. However, the assump-
tions of continuum theory lead to unphysical results, such as
stress singularities at the edge of contacts. It is also troubling
that recent continuum studies of rough surfaces [2,3] find
that the contacts are always dominated by the smallest length
scales that are included in the calculation. Recent atomistic
studies of contact [4—6] reveal that atomic-scale roughness
can lead to substantial deviations from continuum theory at
nanometer scales.

Molecular dynamics (MD) simulations are capable of
modeling the detailed atomic structure at contacting inter-
faces. However, the size of the systems that can be treated is
limited. Recent studies of single-asperity contacts [5,6] ap-
proach the limits of system sizes that can be treated on dedi-
cated parallel compute clusters. Treating a statistical distri-
bution of asperities on rough surfaces requires new
approaches. One possibility is to recognize that atomistic de-
tail is only required in interfacial regions. Away from the
interface, strains are small and change continuously. A con-
tinuum description, such as the finite-element method
(FEM), can be applied there. The challenge is to develop
algorithms that couple atomistic and continuum descriptions
in different regions. For studies of contact and friction, these
algorithms should be able to simultaneously treat finite tem-
perature, dynamic systems, complex geometries, and nonlin-
ear constitutive laws in the continuum.

A variety of approaches for concurrently coupling mul-
tiple computational methods have been developed in the last
decade [7-25]. One class of methods constructs an approxi-
mate energy from a combination of atomistic and continuum
terms [14]. One of the most powerful is the quasicontinuum
method (QCM) [7,8]. In regions of small strain gradients,
only a few atoms are followed, and the energy associated
with the remaining atoms is obtained by assuming an affine
displacement field. In regions where the strain gradients are
large, the mesh is refined until each node corresponds to one

1539-3755/2006/74(4)/046710(11)

046710-1

PACS number(s): 02.70.—c, 45.10.—b, 46.55.+d

atom and the QCM reduces to MD. The coupling formula-
tion is based on nodal forces obtained as the derivatives of
the potential energy functional, and the interface between the
two types of regions has proven challenging to treat consis-
tently. The original versions of this method are restricted to
zero temperature and quasistatic processes, which limits their
applicability to friction. Recently, progress has been made
towards including finite temperatures [9]. In the coupling of
length scales (CLS) method [12] there is a single layer of
boundary atoms and nodes and a single total energy is de-
fined for the whole system. One important limitation is that
defining this energy for general geometries and interatomic
potentials is not straightforward.

Another class of approaches integrates out fine-scale de-
grees of freedom approximately before the simulation be-
gins. Finite temperature and dynamics have been imple-
mented in coarse-graining methods by including an
approximation to the energy and entropy of eliminated atoms
[11] or by defining effective Hamiltonians in analogy to two-
dimensional real-space renormalization group methods [10].
However, these approaches are difficult to extend to arbitrary
interactions and/or higher dimensions. The bridging-scale
method [13] uses a finite-element treatment in coarse-grained
regions and treats the effect of eliminated atoms at linear
order, leading to a memory kernel coupling all atoms that
interact with eliminated atoms. Cai et al. [24] present a nu-
merical method for obtaining a similar kernel that represents
the effect of the entire outer region, assuming linear re-
sponse. The computational overhead associated with calcu-
lating and using these memory kernels can be substantial. E
and Huang have proposed a method for obtaining approxi-
mate local kernels for linear systems at zero temperature
[25], which has been used to treat fracture and friction
[26,27].

A third class of approaches couples atomistic and con-
tinuum regions through constraints on displacements, rather
than constructing an approximate Hamiltonian. The finite-
element and atomistic (FEAt) method [15] and coupled ato-
mistics and discrete dislocation (CADD) method [28] refine
the continuum mesh to atomic scales. The outer atoms feel

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.046710

LUAN et al.

forces from “pad atoms” that follow the finite-element nodes
and constrain the displacements of the outer nodes. The
FEAt algorithm uses a nonlocal continuum formulation to
include corrections from long-range interactions and a non-
linear treatment of the constitutive law. CADD simplifies
these aspects of the model but includes the motion of dislo-
cations through the atomistic-continuum boundary and has
recently been extended to dynamic, finite-temperature simu-
lations [29].

Our approach is closely related to this last class of meth-
ods and to recent work on coupling atomistic and continuum
treatments of fluids [16—19]. Interfacial regions are described
atomistically and bulk regions with the FEM. The dynamics
in the two regions evolve concurrently, but with different
time steps. The smallest mesh size is larger than the interac-
tion range to minimize the need for a nonlocal treatment of
the continuum and simplify the treatment of finite tempera-
tures. In contrast to FEAt and CADD, the displacement
boundary conditions are applied at separated interfaces and
the MD and FEM descriptions overlap and evolve indepen-
dently between these interfaces. At the outer edge of the MD
region, atomic displacements are determined by interpolating
strain fields from the FEM. A spatial and temporal average of
atomic displacements provides nodal displacements at the
boundary of the FEM region. The method can be applied to
dynamic problems at finite temperature with any constitutive
law and there is no constraint on the relative positions of
nodes and atoms.

In Sec. II, we describe the atomistic and continuum meth-
ods used as well as the mechanism for coupling them to-
gether. Section III A describes tests of the hybrid method in
quasistatic contact between single asperities and self-affine
surfaces. Dynamic simulations of pulse propagation and slid-
ing friction are described in Sec. III B. Section IV presents a
summary and conclusions.

II. HYBRID METHOD

To illustrate the method we study single-asperity and
multi-asperity contact in two dimensions. In each case the
top solid is rigid and the bottom solid is deformable. In con-
tinuum mechanics, this situation can be mapped to contact
between two elastic solids [1]. Periodic boundary conditions
are applied along the interface of length L, and the bottom of
the substrate is held fixed at depth D.

For each geometry, results from the hybrid method are
compared to fully atomistic simulations. The next subsection
provides details of the methods used in the atomistic simu-
lations and the atomistic portion of the hybrid method. Then
the continuum portion of the hybrid method is described, and
the final subsection explains how the two descriptions are
coupled. For the system sizes studied in this paper, the hy-
brid method is more than 20 times faster than the pure MD
simulations used to validate it. The performance enhance-
ment increases with system size, which has recently allowed
us to treat much larger systems than would be feasible with
purely atomistic simulations [4].

A. Atomistic simulations

The interactions between atoms within the deformable
substrate are described by a truncated and shifted Lennard-
Jones (LJ) potential V'
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FIG. 1. (Color online) Hybrid model for contact between a rigid
flat solid (black circles) and a rough elastic substrate (light blue
circles). In the overlap region (magnified), outer nodes (large solid
circles) deform according to the displacements of MD atoms within
a radius r,, (dotted circle) and displacements of inner nodes (large
open circles) control the motion of MD boundary atoms (small open
circles) that lie within their element (shaded triangle). The FEM
mesh size is about 4¢ in the overlap and coarsens below.
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where € and o are characteristic energy and length scales,
respectively. To speed the atomistic calculations, we present
results for the cutoff length r.=1.50, so that only nearest
neighbors interact. There is no fundamental limit on the size
of r., but the overlap region described below must be larger
than r,.

Substrate atoms are initially placed on the sites of a two-
dimensional triangular lattice with the equilibrium nearest-
neighbor spacing r,, and a flat or rough surface (Figs. 1 and
2). Atoms in the top solid are fixed rigidly in the desired
geometry, which is described for each example in Sec. III.
They interact with substrate atoms through a purely repulsive
potential obtained by truncating the LJ potential at 2!/°g. The
atomistic equations of motion are integrated with a velocity-
Verlet algorithm using the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) [30,31]. The time step
Aty5=0.0057, where 7=+\ma>/€ and m is the mass of an
atom.

Thermal fluctuations complicate the quantitative compari-
son between different simulations. They can be eliminated by
long time averaging of steady-state quantities, but are harder
to remove for dynamic simulations such as those described
in Sec. III B. To maximize the precision of quantitative tests,
we focus on a low temperature of 7=0.0001€/kp, where kg is
Boltzmann’s constant. We have also tested the method at T
=0.1€/kp. For the purpose of testing the hybrid method, the
same thermostat must be applied in both atomistic and con-
tinuum regions. The most convenient choice within LAM-
MPS is the Langevin thermostat [32], and we used a damp-
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FIG. 2. (Color online) Geometry of the hybrid model near the
contact between a rigid cylinder (top arc of black circles) and a
deformable substrate (light blue circles). The total FEM region has
a size of 4000 X 2000 and extends outside the figure. Solid lines
indicate the boundaries of elements and the smallest have edge 40.
The atomistic region is about 1/16th of the total area, and atoms are
indicated by circles. Stresses along lines A (depth of 300), B (depth
of 1000), and C (vertical center) are compared with results from
pure MD simulations in Figs. 4 and 5.

ing rate of 0.17! unless otherwise noted. More physically
realistic thermostats that conserve local momentum could
also be used [33].

The surfaces are brought together by rigid translation of
the top solid. In some cases the height of the top solid is then
fixed. In others a fixed external force is applied and the equa-
tions of motion of the top solid are followed [34,35]. In the
latter case, the mass M of the top solid is the number of
atoms it contains times m. Both normal forces (loads) and
lateral forces (friction) are considered. The local stress
within the solid is determined from the kinetic energy and
virial terms as described in Ref. [36]. Atoms from the upper
and lower solids are considered to be in contact whenever
they are close enough to repel each other, r<2"°g.

B. Continuum description

In the hybrid method a continuum description is used in
the region far below the surface where physical quantities
change slowly. We use a finite-element mesh with linear,
triangular elements, but the method could also be applied
with higher-order elements. Unlike most methods, the mesh
is not refined to the atomic separation near the overlap re-
gion. Indeed there need be no correlation between atomic
and nodal positions. This may represent a major simplifica-
tion, particularly in three dimensions where meshing or re-
meshing to specific nodal positions is difficult.

There are two other reasons why we do not refine the
mesh to atomic scales. One is that when the mesh dimension
is smaller than the interaction range, the energy of the ele-
ment depends on displacements of surrounding nodes. This
nonlocal effect is included in FEAt [15], but complicates the
finite-element code. A second is that at finite temperatures
the constitutive law is a function of scale. This scale depen-
dence is captured approximately by the finite-T formulation
of QCM [9] and in methods that integrate out fine scale
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degrees of freedom [10,11]. Applying a bulk constitutive law
at the atomic scale can lead to significant errors at high tem-
peratures.

As in the atomistic simulations, periodic boundary condi-
tions are applied along the interface (x direction) and the
bottom nodes in the mesh are fixed. In most cases the mesh
coarsens with depth as stress gradients decrease (Figs. 1 and
2). An explicit dynamic FEM algorithm is used [37]. The
trajectories of nodes are integrated with the second-order
Newmark method. The time step Afzg is small enough to
satisfy the stability requirement for the smallest element and
is described further in the next subsection. A Langevin ther-
mostat with the same damping rate used in atomistic simu-
lations is added to the equations for each node. Note that
specifying the rate, rather than a drag coefficient, ensures
that the damping of a wave is independent of the mesh size.

A linear constitutive law is not adequate for the contact
problems of interest here. Nonlinear effects become signifi-
cant at strains of about 0.3%, and compressive strains remain
above this level far below the surface (Sec. IIT A 1). Since
the overlap region must be placed at a depth where the con-
stitutive law is accurate, a large fraction of the system must
be treated atomistically if a linear law is used. We use a
simple quadratic constitutive law here, but the approach is
readily extended to more complicated laws. One could also
implement an algorithm where stresses are interpolated from
a table, with new values calculated as needed. Note that the
QCM avoids the need for a constitutive law by calculating
the energy exactly for an affine deformation of atoms in an
element. However, this is only straightforward at zero tem-
perature where the energy rather than the free energy con-
trols the stress and for periodic crystalline substrates. Ap-
proximate treatments of the entropic contribution to the
stress have recently been proposed [9], but require more
computation. In addition, the approximate nature of the
stress calculation means that it does not yield the correct
lattice constant and elastic moduli, so that simple constitutive
laws may be more accurate.

To determine the constitutive law, one can evaluate the
stress as a function of strain for a small crystal with periodic
boundary conditions. The number of strains that must be
considered depends on the symmetry of the system, but in
general much less simulation time is required than for any
other part of the calculation. The equilibrium density is de-
termined from zero-pressure simulations at the temperature
of interest, and the constitutive relation is expressed as a
function of the strain relative to this reference state. Includ-
ing all quadratic terms allowed by symmetry in a two-
dimensional (2D) system gives

O = Cllux,x(1 + alux,x) + ClZ“y,y(l + a2uy,y)

2 2
+ agux,y + a4uy,x + asux,xuy,y + a6ux,yuy,xs

2
a-yy = C22uy,y(1 + B]uy,y) + ClZ“x,x(l + B2ux,x) + B3ux,y

2
+ ﬁ4uy,x + BSux,xuy,y + ﬁ6ux,yuy,x’

Oy = Oy = a3y + 1, )2+ Yyt (2)
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where u; ;= du;/ dx;, u; is the displacement along coordinate
i, and x; is the initial position of the atom along coordinate j.
Note that using the nonlinear Lagrangian strain tensor (u;
+uj i+ uy )/ 2 at lowest order does not yield all of the
terms for the diagonal stress components in Eq. (2). How-
ever, it does yield the quadratic term for the off-diagonal
stress and with ratios of coefficients that are nearly consistent
with those determined below.

The triangular lattice is isotropic at the linear level, im-
plying cy1=cy, and c33=c;,. The Poisson ratio v=cj,/cy;
=1/3, leaving a single parameter to be determined. Fits for
small displacements give cj,=cy3=c;;/3=25.14€072. The
quadratic terms in the expansion are not isotropic, but are
related by sixfold symmetry. They were determined individu-
ally by changing individual or pairs of strains to minimize
cross talk. The measured stress was fit to better than 0.5% up
to strains of 2% with the parameters: «;=10.0, a,=9.8, a3
=12.3e072, a4:3860‘2, a5:20060"2, a6:10060"2, B1=74,
B>=2.9, B3=186e072, B,=163e€c7%, Ls=550e072, S
=413e072, and y,=45e07>.

We will compare our results to classical continuum con-
tact mechanics for ideally elastic and isotropic materials.
There the only constitutive parameter is an effective modulus
E'=E/(1-17%), where E=c|;—c,/ v=c,;(1-1?) is Young’s
modulus [1]. For our system, E*=75.42e072 at zero strain. In
anisotropic crystalline materials, £ depends on the orienta-
tion of the surface. Studies of such materials show that the
standard continuum equations can be used, but the value of
E" must be determined numerically for each orientation [1].

C. Coupling scheme

We use an overlap region to connect MD and FEM re-
gions and pass local deformations in both directions. As
shown in Fig. 1, top nodes of the mesh follow the displace-
ment of the atoms around them, while atoms on the bottom
boundary of the MD region get displacement information
from the mesh element that they belong to. There is some
freedom in the exact procedure for determining the displace-
ments that are passed between descriptions. The differences
between them are qualitatively similar to the differences be-
tween different order elements or different choices of mesh
size in FEM methods [19].

For the results shown below, each atom on the MD
boundary (small open circles) is associated with the mesh
element containing its initial atomic position. The displace-
ment of the atom is then interpolated from the nodal dis-
placements using the initial position and the shape functions
for the element [38]. As noted above, linear elements are
used. In order to provide complete boundary conditions for
the atomistic region, the width of the region of interpolated
atoms must exceed the interaction range r.. Only a single
atom is required here, since we use nearest-neighbor interac-
tions. For very long-range interactions it may be possible to
use a small overlap region and replace the outer atoms by a
spatial integral [32]. However, representing constitutive rela-
tions on mesh elements smaller than r. is not generally ac-
curate. This is why the computationally expensive nonlocal
version of the QCM must be applied in the regions that are
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refined to atomic scales. The transition from nonlocal to local
schemes as the mesh coarsens then introduces complicated
ghost forces. Using an overlap region that is wider than r,
ensures that no ghost forces enter the dynamics in the purely
atomistic region of our system.

The positions of the boundary nodes (large solid circles)
of the mesh were determined by averaging the displacements
of all atoms whose initial position is nearby. One approach is
to invert the relation connecting nodal and local displace-
ments. Each node is then affected by all atoms whose initial
positions lie inside the elements that contain the node. For
our example, this corresponds to atoms in a deformed hex-
agonal region. This approach has the disadvantage that only
half the mesh elements associated with boundary nodes are
defined and the weighting function is complex (although it is
only calculated once). A simpler approach is to replace the
averaging area by a circle of comparable area (dotted circle)
and use a weighting function consistent with the FEM. Since
we use linear elements, we use a weight that decreases lin-
early with distance and reaches zero at a radius r,,. In most
cases, r,,=40, which is comparable to the separation be-
tween nodes (4-5¢). Smaller radii and uniform weighting
functions were also tried. As long as the gradient in strain is
small, the results are not significantly different.

The coupling methods of FEAt and CADD can be viewed
as specific limits of the above in which the mesh is refined to
atomic scales and nodes coincide with atoms. In these meth-
ods the atoms whose displacements follow nodes (small
open circles) are directly adjacent to atoms that determine
displacements of boundary nodes (large solid circles). In our
generalized approach, they may be separated by several lay-
ers of unconstrained atoms. In fluid applications [18,19,39]
this played an important role in allowing perturbations pro-
duced by the atomic boundary to equilibrate before affecting
the motion of the atoms that determined continuum displace-
ments. A similar equilibration of fluctuations about crystal-
line lattice sites may be important in solids at higher tem-
peratures.

Our multiscale method uses different time as well as dif-
ferent spatial scales. The time step in atomistic regions,
Atyp, must be small enough to resolve the rapid motion of
individual atoms. Since each node corresponds to multiple
atoms, a larger time step Aty can be used for their dynam-
ics. In principle the time step could coarsen with mesh size,
but the FEM portion of the calculation was so fast that a
single Atz corresponding to the smallest elements was used.
For the results shown, the smallest nodal separation is about
4 times the atomic separation and Atpz=20Afyp. This is
about 1/4 of the maximum stable time step for the FEM,
which corresponds to the time for sound to propagate across
the smallest circle that fits into an element.

The different time scales of the FEM and atomistic de-
scriptions mean that displacements in the overlap region
must be extrapolated and interpolated. We followed an inter-
leaving procedure that was successful in a similar method for
fluid dynamics [18]. Nodal positions at the boundary of the
FEM for time 7,=nAtz are determined by averaging the
atomic displacements within r,, from f,—0.5Afz to 1,
+0.5Atpg. The FEM code is then called to advance all other
nodal positions to #,. Extrapolated values of the nodal posi-
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tions that determine atomic displacements on the boundary
are also obtained for 7,+0.5At;; to t,+1.5Atz;. The MD
simulation can then be run for this next time interval and the
process repeated. Choosing Afpz below the stability limit
guarantees that nodal displacements are small enough that
the linear extrapolation is reasonable. To confirm this, we
checked that there was little dependence on the ratio
Atppl Aty as it was reduced to unity. Extrapolating the
atomic positions would be less stable, because of their more
rapid changes.

III. RESULTS
A. Steady-state simulations
1. Single-asperity contacts

Contact between a cylinder and a flat substrate is one of
the classic problems in continuum contact mechanics. Within
the continuum description [ 1], the general case of two elastic
bodies can be reduced to a rigid cylinder and an elastic sub-
strate with an effective modulus E*. We consider this simpler
case, with a tip radius R=1000 that would be typical of an
atomic force microscope tip [5,40]. The CADD method [41]
has been used to study nanoindentation by an idealized
smooth cylinder at larger loads than those considered here.
Full MD simulations [5] indicate that the specific atomic
structure of the cylindrical tip may play an important role,
and we consider the simplest geometry used there, a bent
crystalline tip.

One key quantity is the size of the contacting region,
which is normally expressed as 2a, where a is the half-width.
In continuum theory for ideal elastic solids

a=\ANR/7E", (3)

where the normal load N pushing the surfaces together must
be small enough that a<<R. The subsurface stress is also
important because it determines the onset of plastic deforma-
tion. Yield is usually assumed to initiate where the deviatoric
shear stress is largest, which is predicted to occur at a depth
of 0.78a below the surface [1].

Figure 2 shows the geometry of the mesh and atomistic
region for the hybrid method. An atomistic description is
only important in the region near the contact where stresses
and strains are largest. However, subsurface deformations are
important in determining the size of the contact due to the
long-range nature of elastic deformations. To minimize
boundary effects, the depth D and lateral period L must be
much greater than a. In a previous paper [5], we used an all
atomistic description with L=4000 and D=2000 to ap-
proach this limit. For our hybrid calculation we use the same
geometry, but only treat 1/16 of the area atomistically. A
gradually coarsening FEM is used in the remainder of the
area.

The tip is represented by a crystal bent into a circular arc.
Since the tip-substrate interaction is purely repulsive and
short range (Sec. I A), a single layer of surface atoms on the
cylinder is sufficient. We consider two values of the atomic
spacing rj in the tip. To approach the limit of continuum
theory we use a dense tip with atoms spaced by a tenth of the
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FIG. 3. Relation between contact radius a and load N for 2D
cylindrical contact. Open hexagons and squares show all atomistic
results for dense and commensurate cylinders, respectively. The
corresponding hybrid results are indicated by asterices and crosses.
A solid line shows the continuum prediction for elastic solids and
dotted lines are guides to the eye.

atomic spacing 7, in the substrate. To reveal effects of atomic
discreteness we consider ry=ry, allowing the atoms to lock
together easily. We will refer to this as the commensurate tip.
All substrate atoms that are close enough to be repelled by
the tip are considered to be part of the contact.

Figure 3 shows the contact half-width a as a function of N
for dense and commensurate tips. In both cases, results from
the hybrid method and fully atomistic calculations are indis-
tinguishable over the entire range of loads. Previous simula-
tions [5] with the dense tip that used purely linear elastic
interactions between substrate atoms were in good agreement
with the continuum prediction given by Eq. (3) (solid line).
This agreement is also seen at small loads in Fig. 3. As the
load increases, the nonlinearity of the LJ interactions used
here grows in importance, leading to a monotonic increase in
the deviation from continuum theory. The LJ bonds stiffen
with increasing strain, reducing the deformation and thus de-
creasing the size of the contact region relative to the elastic
prediction. Increasing the load beyond the values shown pro-
duces plastic deformation, which is discussed further in the
next subsection and Ref. [4].

Results for the commensurate tip are consistently higher
than those for the dense tip. As discussed in Refs. [5,6],
atomic structure makes tips appear rougher and smears the
contact region. Even larger effects are observed for other
atomic approximations to cylindrical or spherical tips, such
as amorphous or stepped surfaces [5,6]. Similar effects may
be important for macroscopic rough surfaces because statis-
tical analyses of their contacts indicate that most are at very
small scales [2,3]. This effect is considered in the next sub-
section.
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FIG. 4. Stresses normalized by E* as a function of lateral posi-
tion at depths of (a) 300 and (b) 1000 below the surface that are
indicated by lines A and B in Fig. 2, respectively. Hybrid results for
oy, (triangles), o, (squares), and o, (circles) are compared to pure
atomistic simulations (solid lines). In (a) there is a smooth transition
between atomistic values (solid symbols) and FEM values (open
symbols) in the overlap region. Here N/RE"=0.0132 and the minus
sign is introduced so that positive values correspond to compressive
stresses.

Figures 4 and 5 compare the subsurface stresses calcu-
lated from the hybrid method and pure atomistic simulations
at N/RE"=0.0132. The stresses are normalized by E” so that
values for oy, correspond roughly to the compressive strain,
and values for o, and o, are roughly one-third of the cor-
responding strains. Stresses in FEM regions (open symbols)
are linearly interpolated from the stresses on nearby Gauss-
ian points. Stresses in the MD region are calculated from the
local microscopic stress tensor [32]. In all cases, results from
the two methods are nearly indistinguishable in the plot. An
analysis for the root-mean-square (rms) deviations shows
that they are about 107*E” in Fig. 4 and 3 X 10*E" in Fig. 5.
In all cases, this is less than 1% of the peak values.

Figure 4 shows the stresses along lines A and B in Fig. 2,
corresponding to depths of 300 and 1000 below the unde-
formed surface, respectively. Figure 5 shows the normal
stress o, along line C in Fig. 2. Note that along lines that
pass through the overlap region (A and C) the stresses from
the atomistic and FEM regions of the hybrid method are
continuous. The constraints on the displacements in the over-
lap region ensure continuity of the strain tensor, but the stress
tensor is only continuous if the constitutive relation is accu-
rate for strains in the overlap region. This condition deter-
mines how large the atomistic region must be. When a purely
linear constitutive law was used in the continuum we ob-
served a discrepancy of 10% between continuum and atom-
istic stresses in the overlap region. This led to similar dis-
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FIG. 5. Normalized stress o,/ E” as a function of depth y below
the center of the substrate (line C in Fig. 2). A solid line shows the
stress from a purely atomistic simulation, and solid and open tri-
angles show stresses in the MD and FEM regions of the hybrid
calculation, respectively. Here N/RE"=0.0132 and the minus sign
is introduced so that positive values correspond to compressive
stresses.

crepancies between the total force applied to the top surface
and that transmitted to the bottom of the substrate.

Along line A (Fig. 4) the stresses correspond to strains of
up to 2.5%, while our quadratic constitutive model is only fit
to 2% strains. Even 1000 below the surface (line B) the
strains (~1%) are 3 times larger than can be accurately de-
scribed by linear elasticity. From Fig. 5 we see that the com-
pressive stress remains above 2% until depths of about 350
for this load. The overlap region must be below this depth.
Fitting the constitutive relation to larger strains would relax
this condition. However, another constraint is that the change
in strain over the mesh size in the overlap region must be
small enough for the linear elements to be accurate. This
constraint and dynamic constraints are discussed in Sec.
11 B.

For the purpose of illustrating the method we have chosen
a fixed overlap region with a simple rectangular geometry
that is large enough to be accurate at the largest loads. A
more efficient approach would be to determine the overlap
region dynamically. The instantaneous values of local strain
and strain derivatives determine where the constitutive rela-
tion is accurate. The atomistic region could be expanded into
regions of growing strain and shrunk where the constitutive
relations are accurate.

2. Contact between rough surfaces

The simple cylindrical geometry considered above is rela-
tively easy to treat with analytic or single-scale numerical
approaches. Real surfaces typically have roughness on many
different length scales and thus pose a much greater compu-
tational challenge. A large interface must be treated to obtain

046710-6



MULTISCALE MODELING OF TWO-DIMENSIONAL...

a statistical sampling of the roughness, and a roughly equal
depth must be included in order to capture the effects of
subsurface deformations. These deformations produce long-
range correlations that qualitatively alter the contact geom-
etry [2-4].

To test our method for more complex surfaces we con-
sider contact between a rigid flat surface and a deformable
substrate with a self-affine fractal surface [42]. Self-affine
surfaces are characterized by a Hurst or roughness exponent
H, which is between 0 and 1. The rms change in height w({)
over a lateral distance ¢ scales as w({) < €". At large € the
surface appears flat because w grows more slowly than €. At
small ¢ the mean surface slope diverges since w/{ ~ £~(1=1)
For any real surface, this divergence is cut off because the
scaling cannot extend to lengths smaller than the interatomic
spacing.

The deformable substrate had a lateral period of L
=1024ry=11490 and a depth D=9720. A self-affine curve
with H=0.5 was generated using the successive random mid-
point algorithm of Voss [42]. The curve was resolved to ry/2,
since this is the lateral spacing between atoms on successive
layers. The rms slope on this smallest scale was 0.26 and the
mean height was zero. Then all atoms on a triangular lattice
whose height lay above the surface were removed. A small
piece of the resulting system is shown in Fig. 1. Purely ato-
mistic simulations involved more than 10° atoms and
103At,p, and strained the limits of our local computer clus-
ter. In the hybrid method, the overlap region was placed at an
average depth of 500 below the surface, reducing the num-
ber of atoms (and the total computation time) by about a
factor of 20. The smallest mesh elements had an edge length
of 4o.

The rigid flat surface has the same atomic spacing r, as
the substrate. A constant load is applied and the system al-
lowed to equilibrate. Rigid atoms that interact with the sub-
strate are considered to be part of the total length L. of mo-
lecular contact. The fraction L./L of the total period L along
the interface that is in contact is just the fraction of rigid
atoms that interact with the substrate.

Figure 6 shows the variation of L./L with the dimension-
less load N/LE". As before, results from the hybrid and
purely atomistic simulations are in excellent agreement. The
small difference between the two points near L./L=0.09 rep-
resents a stochastic fluctuation rather than a systematic error.
Some jumps in the area result from plastic rearrangements
where atoms on the top layer of a peak in the substrate are
pushed down into the next layer [4]. This is a nucleated event
that is very sensitive to the loading history and small oscil-
lations of the top surface under the constant load. The hybrid
simulation followed the same sequence of events, but at
slightly shifted times. Similar variations were observed be-
tween different atomistic simulations for the same geometry
and different initial velocities. For the loads considered here,
plastic deformation was confined to the inner portion of the
atomistic region. The atomistic region would need to be ex-
tended if dislocations propagated to the overlap region. Al-
ternatively, discrete dislocations could be included in the
continuum model [20].

Continuum calculations and simulations generally predict
a linear relation between L. and N. Our numerical results are

PHYSICAL REVIEW E 74, 046710 (2006)

0.008 —

0.006 -

N/(LE")

0.004 -

0.002 —

0.125 0.15

0
0 0.025 0.05 0.075 0.1
L./L

FIG. 6. Variation of the fraction of interface length in contact
L./L with dimensionless normal load N/(LE") from purely atomis-
tic simulations (squares) and the hybrid method (crosses). The sub-
strate had a lateral period L=1024r, and a self-affine topography
with H=0.5 and rms slope 0.26 at the smallest scale.

roughly consistent with a linear fit, but L./L goes to a con-
stant at small loads. The reason is that the surface height can
only change in discrete steps of the spacing between atomic
layers, 3'/2r,/2. For this L, a significant fraction of the sub-
strate has the same height and contacts the top surface at the
same time. As L increases, this effect decreases, but the slope
remains much smaller than predicted by continuum calcula-
tions [4].

B. Dynamic simulations

The above simulations show that the hybrid method pro-
vides an accurate description of steady state properties. A
more stringent test of the method is the response to time
varying strains. One potential source of error is the interpo-
lation and extrapolation over Az, to match the time scales of
the atomistic and FEM regions. Another concern is whether
the overlap region leads to spurious reflections of lattice vi-
brations.

The problems of main interest to us involve contact and
friction at interfaces. The interface is then the main source of
vibrations. We consider two test cases: pulses driven by dis-
placing the top of the substrate and friction between rough
surfaces.

1. Pulse propagation

Pulse propagation through a deformable substrate was
studied for a system of width L=64ry,=71.8¢ and D=2000.
In the hybrid model the region y>-96.20 was treated ato-
mistically. A uniform triangular mesh with nodal spacing 4o
was used for y<<—89.8¢. The coarser spacing in the FEM
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FIG. 7. (Color online) Shear displacement Ax as a function of
depth below the surface for fully atomistic calculations (solid lines),
FEM calculations with a constant mesh-size (blue crosses), and the
hybrid method (red squares). The pulse is initiated at the surface
(y=0), and all results are for the time where the leading edge of the
pulse reaches the bottom of the atomistic system. The full width at
half maximum is (a) 110, (b) 220, and (c) 440 and the nodal
spacing on the FEM is about 40.

region means that short-wavelength modes can not propagate
from the atomistic region and will be reflected. Similar prob-
lems are well known in pure FEM calculations with a coars-
ening mesh [38]. To separate errors produced by the coarse
FEM mesh from those intrinsic to the hybrid method, we
also present purely FEM results with a constant mesh size
equal to that in the continuum portion of the hybrid method.

The entire flat top layer was displaced laterally to ge-
nerate a shear pulse. The form of the displacement was
Ax=0.1[1-cos(wt)]o for 0<t<2m/w and zero for earlier
and later times. This generates a pulse with full width at half
the maximum of about Ay=c,7/w, where c¢;=4.90/7 is the
shear velocity. Pulse widths of about 110, 220, and 440 are
shown, corresponding to about 3, 5.5, and 11 times the FEM
mesh size. The peak strains are small enough to be described
by the constitutive relations. For these simulations the ther-
mostat was turned off to eliminate damping during transmis-
sion.

Figure 7 shows the mean shear displacement along x as a
function of depth at the time when the leading edge of the
pulse is reaching the bottom of the fully atomistic system.
The hybrid method and pure FEM calculation are close to
the purely atomistic results for the largest pulse width [Fig.
7(c)]. Both methods show increasing deviations from atom-
istic results as the pulse width decreases. The similarity be-
tween the changes in pulse shape shows that the coarseness
of the FEM mesh is the main source of error. The propaga-
tion velocity on the coarse mesh is too slow, causing the
pulses to lag behind the atomistic results. Oscillations also
appear at the tail of the pulses because the frequency-
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dependent dispersion relation is altered. Note that both of
these changes are more noticeable for the pure FEM results.
This is because the pulse travels on the coarse mesh over the
entire FEM system, while the coarse mesh starts in the over-
lap region for the hybrid system.

The resolution change in the overlap region leads to an
additional reflected wave in the hybrid results. A similar ef-
fect would be observed in a pure FEM calculation with a
sudden change in mesh size. The magnitude of the reflected
wave was quantified by taking the ratio between the energy
carried in the reflected wave to the total energy in the origi-
nal wave. As the pulse width increases from Figs. 7(a)-7(c),
the percentage reflected decreases from 21.6% to 1.1% to
0.31%. For most purposes using a mesh size of 1/10 the
pulse width appears to be adequate.

A number of methods for minimizing reflections have
been explored for linear systems. The work of Cai et al. [24]
can in principle be used at any temperature, but involves
simulating the full geometry atomistically before doing mul-
tiscale simulations. E and Huang [25] have developed a local
method capable of reducing reflections in linear systems at
T=0. Both approaches deal with reflection at a sharp inter-
face, and not the effects of the gradual coarsening in efficient
FEM meshes. Algorithms that can overcome these limita-
tions and address nonlinearity are an important topic for fu-
ture research, but at present we restrict attention to regimes
where reflections are not important.

We have explored the effect of parameters in our coupling
scheme on the magnitude of reflected waves. One is the ra-
dius r,, of the circle over which atomic displacements are
averaged to fix nodal displacements. Decreasing r,, from 4o
to 1o reduced reflections to 15.3%, 0.56%, and 0.085% for
the three widths in Fig. 7. However, it seems most natural for
1, to correspond to the area represented by each node. This
became more important when the temperature was increased,
because the thermal fluctuations of atoms in a smaller region
are larger than those appropriate for the nodal points.

As noted above, no thermostat was applied during these
pulse simulations. The hybrid method remained stable over
this interval (~407). When the simulation time was extended
by more than an order of magnitude (~5007), changes in the
energy became significant and the temperature grew continu-
ously. Analysis of one-dimensional analogs of our system
indicates that the coupling in the overlap region may intro-
duce a weak, small-wavelength instability. A similar tem-
perature rise occurs in purely atomistic simulations when a
Gear predictor-corrector algorithm is used without a thermo-
stat [32]. As there, our hybrid simulations remain stable and
produce results that are statistically equivalent to other meth-
ods as long as the system is coupled to a thermal bath on a
time scale shorter than the time for temperature growth.

2. Friction on rough surfaces

In problems involving contact and friction between rough
surfaces, the dominant wavelength of the elastic deforma-
tions that couple asperities will scale with the depth below
the surface. Using standard criteria for mesh quality will en-
sure that the mesh size is much smaller than the depth in
order to capture these deformations. The pulse results shown
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FIG. 8. Friction F as a function of the lateral displacement of
the top wall at v=0.010/7 and load N=204.8¢/ 0. Hybrid results
(symbols) and pure atomistic simulations (lines) are shown for (a) a
flat substrate and (b) the self-affine surface of Sec. IIT A 2.

in the previous subsection place similar constraints on the
mesh. They indicate that for the dynamic changes in the
elastic deformations to propagate smoothly, the mesh size
should be less than 10% of the depth.

To test the hybrid method in simulations of sliding fric-
tion, we consider a flat rigid crystal sliding over a flat or
rough deformable substrate. The rough surface has the same
self-affine topography considered in Sec. IIT A 2. In both
cases the mesh size in the overlap region, 40, is less than
10% of the depth of the atomistic region, 500.

The flat, upper solid is moved laterally at a constant ve-
locity of v,=0.010/7, while a constant normal load N is
applied. Figure 8 shows the friction force as a function of
sliding distance for N=204.8¢/0. Results from the hybrid
method (points) accurately reproduce those from purely ato-
mistic simulations.

In these simulations, the rigid and deformable solids have
the same lattice constant r(. The friction force varies periodi-
cally as the top solid is advanced by one lattice constant. For
the flat surface all top atoms move coherently up and down
over the substrate atoms and the resulting friction is large.
For the rough surface, only about 7.2% of the surface is in
contact at this load. The contacting region is broken up into
many small regions where local peaks hit the top wall. The
sum of the peak forces for each region is comparable to that
for the flat surface, but the peaks advance out of phase, re-
ducing the amplitude of the periodic force. Two factors con-
tribute to the dephasing. One is a Poisson ratio effect. Pres-
sure on a peak causes a lateral expansion of the surrounding
material. Even though periodic boundary conditions are im-
posed, fluctuations in pressure lead to fluctuations in the lat-
eral spacing of peaks. A more important effect is that alter-

PHYSICAL REVIEW E 74, 046710 (2006)

0.001

0.0005

F/(AE")

0
0 0.001

0.002
N/(AGE")

0.003 0.004

FIG. 9. Friction as a function of load for the rough surface of
Sec. III A 2. The static friction from hybrid and fully atomistic
simulations is shown by crosses and squares, respectively. The cor-
responding kinetic friction is indicated by asterisks and circles.

nate layers of the triangular lattice are shifted laterally by
ro/2. Peaks whose highest points are on odd and even layers
will tend to advance exactly out of phase. The total force
does not cancel because of Poisson effects and because a
small number of contacts provide most of the force.

At the velocity considered here, the temporal period of the
force is ro/v=1127. This is about 7 times longer than the
longest pulse in Fig. 7. Studies at higher velocities show that
the hybrid method continues to reproduce atomistic results.
However, in many cases the quantity of interest is the kinetic
friction in the quasistatic limit. This requires that stress can
equilibrate on the scale L, of the largest wavelength of lat-
eral roughness and over a depth of the same scale. The time
for stress equilibration is of order L,,/c,, and this should be
less than the time scale for changes in the surface force ry/v.
One concludes that to be in the quasistatic limit one must
have v <c¢,ry/L,,. For a typical atomic force microscope ex-
periment L, ~ 10 nm and v~ 1 mm/s<<c,ry/Ly,~30 m/s,
using r,~0.3 nm and ¢,~ 10° m/s. Similarly, for a surface
force apparatus, L,,~100 um and v~1 um/s<<cry/Ly
~3 mm/s. For the simulations shown in Fig. 8, v
~2c,ry/L,, so stress only equilibrates over half the system
depth. As noted above, reflections would not become impor-
tant until the velocity increased by more than an order of
magnitude, and the method becomes more accurate as the
velocity decreases into the quasistatic regime. We conclude
that the approach can be used over a wide range of velocities
from the quasistatic limit to a few percent of the sound ve-
locity.

Experiments typically identify two types of friction: the
static friction F; needed to initiate sliding and the kinetic
friction F; needed to maintain steady sliding at a velocity v.
The peak force corresponds to F. Values of F; were obtained
by averaging curves like those in Fig. 8 over a distance of
150. Both quantities are plotted as a function of normal load
in Fig. 9. Once again, results from the hybrid method are in
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excellent agreement with purely atomistic simulations, while
requiring a small fraction of the computational effort. Indeed
the purely atomistic simulations were so computationally in-
tensive that values were only obtained for two loads. The
hybrid method allowed us to explore the effect of load in full
detail.

At small loads, the real contact area L, is constant. This
corresponds to the area in the limit of zero load in Fig. 6. In
this limit the static friction force increases linearly with the
load, because the potential energy barrier for displacing each
atom rises linearly with load [43]. The kinetic friction rises
much more slowly, because the positive and negative forces
produced by the potential nearly cancel [44]. Both frictions
rise with a different slope for N/(LE")>0.0006 where L,
rises linearly with load (Fig. 6). The static friction rises more
slowly than at low loads because contributions to the total
force from the increased area do not all add in phase. The
kinetic friction rises more rapidly because the regions of
negative force are suppressed. This is related to an increase
in the ratio of interfacial stiffness to bulk stiffness with in-
creasing load [44,45].

IV. SUMMARY AND CONCLUSIONS

We have implemented a hybrid method that treats interfa-
cial effects atomistically, while capturing long-range elastic
deformations using continuum FEM techniques. To avoid
discontinuous transitions in behavior, the atomistic and con-
tinuum descriptions are coupled via an overlap region that is
wider than the interaction range. At the outer boundaries of
the overlap region, displacements from one description pro-
vide boundary conditions for the other (Fig. 1). The FEM
need not be refined to atomic scales, and there is no need to
constrain nodal positions to coincide with atoms. The hybrid
method can be applied to quasistatic or dynamic problems at
any temperature where the solid remains stable, as long as
the appropriate temperature-dependent constitutive law is
used.

The method was tested by comparing to purely atomistic
simulations of quasistatic and dynamic processes in simple
and complex rough geometries. A low temperature was used
to allow precision comparisons and to minimize stochastic
differences in dynamic quantities. Quasistatic results for the
contact area (Figs. 3 and 6) and subsurface stress (Figs. 4 and
5) were extremely accurate when the correct nonlinear con-
stitutive relation was used. The hybrid method also repro-
duced atomistic results for the time dependence of friction
forces (Fig. 8) and allowed us to calculate the static and
kinetic friction over a much wider range of loads than was
feasible with purely atomistic simulations (Fig. 9).
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Studies of pulse propagation illustrate the potential limi-
tations of the method for dynamic simulations (Fig. 7).
Pulses moving from the atomistic to FEM region suffered
distortion and reflection when the pulse width was compa-
rable to the FEM resolution (Fig. 7). These effects are not
intrinsic to the hybrid method and are also encountered in
any FEM calculation when the mesh size coarsens. Recent
algorithms reduce reflections at the boundaries of atomistic
regions [24,25], but transmission of crucial low-frequency
strain waves may also be affected and they remain limited to
linear constitutive laws. Development of general, nonlinear,
finite-temperature methods for minimizing reflections from
atomistic boundaries and changes in mesh size remains an
important issue for future research.

The velocities of interest in friction simulations are often
low enough to be in the quasistatic limit where the dominant
wavelengths exceed not only size of the largest mesh ele-
ments but the entire system size. Shorter-wavelength vibra-
tions generated by atomic collisions, local stick-slip motion,
and other rapid processes are important mainly as channels
of energy dissipation. In experimental systems these rapid
vibrations would be converted to heat by viscoelastic damp-
ing in the solid or incoherent scattering at boundaries or
impurities. Except in extremely small systems and at high
velocities, coherent reflections from boundaries do not ap-
pear to play an important role in the dynamics. Given this,
the key goals of any simulation method should be to limit
spurious reflections at artificial boundaries like the overlap
region and minimize reflections at real boundaries by damp-
ing waves or ensuring that scattering is incoherent. In the
simulations described here, damping was implemented using
a Langevin thermostat. This violates momentum conserva-
tion and a more physical approach would be to use a vis-
coelastic constitutive law for the FEM region and a corre-
sponding diffusive particle dynamics in the atomistic region
[33].

Although the method has only been applied to 2D prob-
lems here, it is straightforward to extend it to 3D systems. A
more ambitious goal is to implement dynamic remeshing al-
gorithms that expand or shrink the atomistic region in re-
sponse to changing stresses. Work on both extensions is cur-
rently underway.
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